88 research outputs found

    Reliability approach to rotating-component design

    Get PDF
    A probabilistic methodology for designing rotating mechanical components using reliability to relate stress to strength is explained. The experimental test machines and data obtained for steel to verify this methodology are described. A sample mechanical rotating component design problem is solved by comparing a deterministic design method with the new design-by reliability approach. The new method shows that a smaller size and weight can be obtained for specified rotating shaft life and reliability, and uses the statistical distortion-energy theory with statistical fatigue diagrams for optimum shaft design. Statistical methods are presented for (1) determining strength distributions for steel experimentally, (2) determining a failure theory for stress variations in a rotating shaft subjected to reversed bending and steady torque, and (3) relating strength to stress by reliability

    Design features and results from fatigue reliability research machines

    Get PDF
    Design and performance tests for reversed bending with steady torque fatigue test machine using notched steel specimen

    Observation of Sommerfeld precursors on a fluid surface

    Full text link
    We report the observation of two types of Sommerfeld precursors (or forerunners) on the surface of a layer of mercury. When the fluid depth increases, we observe a transition between these two precursor surface waves in good agreement with the predictions of asymptotic analysis. At depths thin enough compared to the capillary length, high frequency precursors propagate ahead of the ''main signal'' and their period and amplitude, measured at a fixed point, increase in time. For larger depths, low frequency ''precursors'' follow the main signal with decreasing period and amplitude. These behaviors are understood in the framework of the analysis first introduced for linear transient electromagnetic waves in a dielectric medium by Sommerfeld and Brillouin [1].Comment: to be published in Physical Review Letter

    Analysis of multistate models for electromigration failure

    Get PDF
    This article was published in the Journal of Applied Physics [© American Institute of Physics] and the definitive version is available at: http://dx.doi.org/10.1063/1.3262497The application of a multistate Markov chain is considered as a model of electromigration interconnect degradation and eventual failure. Such a model has already been used [ Tan et al., J. Appl. Phys. 102, 103703 (2007) ], maintaining that, in general, it leads to a failure distribution described by a gamma mixture, and that as a result, this type of distribution (rather than a lognormal) should be used as a prior in any Bayesian mode fitting and subsequent reliability budgeting. Although it appears that the model is able to produce reasonably realistic resistance curves R(t), we are unable to find any evidence that the failure distribution is a simple gamma mixture except under contrived conditions. The distributions generated are largely sums of exponentials (phase-type distributions), convolutions of gamma distributions with different scales, or roughly normal. We note also some inconsistencies in the derivation of the gamma mixture in the work cited above and conclude that, as it stands, the Markov chain model is probably unsuitable for electromigration modeling and a change from lognormal to gamma mixture distribution generally cannot be justified in this way. A hidden Markov model, which describes the interconnect behavior at time t rather than its resistance, in terms of generally observed physical processes such as void nucleating, slitlike growth (where the growth is slow and steady), transverse growth, current shunting (where the resistance jumps in value), etc., seems a more likely prospect, but treating failure in such a manner would still require significant justification

    Viral population estimation using pyrosequencing

    Get PDF
    The diversity of virus populations within single infected hosts presents a major difficulty for the natural immune response as well as for vaccine design and antiviral drug therapy. Recently developed pyrophosphate based sequencing technologies (pyrosequencing) can be used for quantifying this diversity by ultra-deep sequencing of virus samples. We present computational methods for the analysis of such sequence data and apply these techniques to pyrosequencing data obtained from HIV populations within patients harboring drug resistant virus strains. Our main result is the estimation of the population structure of the sample from the pyrosequencing reads. This inference is based on a statistical approach to error correction, followed by a combinatorial algorithm for constructing a minimal set of haplotypes that explain the data. Using this set of explaining haplotypes, we apply a statistical model to infer the frequencies of the haplotypes in the population via an EM algorithm. We demonstrate that pyrosequencing reads allow for effective population reconstruction by extensive simulations and by comparison to 165 sequences obtained directly from clonal sequencing of four independent, diverse HIV populations. Thus, pyrosequencing can be used for cost-effective estimation of the structure of virus populations, promising new insights into viral evolutionary dynamics and disease control strategies.Comment: 23 pages, 13 figure

    Dislocation-induced spin tunneling in Mn-12 acetate

    Full text link
    Comprehensive theory of quantum spin relaxation in Mn-12 acetate crystals is developed, that takes into account imperfections of the crystal structure and is based upon the generalization of the Landau-Zener effect for incoherent tunneling from excited energy levels. It is shown that linear dislocations at plausible concentrations provide the transverse anisotropy which is the main source of tunneling in Mn-12. Local rotations of the easy axis due to dislocations result in a transverse magnetic field generated by the field applied along the c-axis of the crystal, which explains the presence of odd tunneling resonances. Long-range deformations due to dislocations produce a broad distribution of tunnel splittings. The theory predicts that at subkelvin temperatures the relaxation curves for different tunneling resonances can be scaled onto a single master curve. The magnetic relaxation in the thermally activated regime follows the stretched-exponential law with the exponent depending on the field, temperature, and concentration of defects.Comment: 17 pages, 14 figures, 1 table, submitted to PR

    MACSE: Multiple Alignment of Coding SEquences Accounting for Frameshifts and Stop Codons

    Get PDF
    Until now the most efficient solution to align nucleotide sequences containing open reading frames was to use indirect procedures that align amino acid translation before reporting the inferred gap positions at the codon level. There are two important pitfalls with this approach. Firstly, any premature stop codon impedes using such a strategy. Secondly, each sequence is translated with the same reading frame from beginning to end, so that the presence of a single additional nucleotide leads to both aberrant translation and alignment

    LOCAS – A Low Coverage Assembly Tool for Resequencing Projects

    Get PDF
    Motivation: Next Generation Sequencing (NGS) is a frequently applied approach to detect sequence variations between highly related genomes. Recent large-scale re-sequencing studies as the Human 1000 Genomes Project utilize NGS data of low coverage to afford sequencing of hundreds of individuals. Here, SNPs and micro-indels can be detected by applying an alignment-consensus approach. However, computational methods capable of discovering other variations such as novel insertions or highly diverged sequence from low coverage NGS data are still lacking. Results: We present LOCAS, a new NGS assembler particularly designed for low coverage assembly of eukaryotic genomes using a mismatch sensitive overlap-layout-consensus approach. LOCAS assembles homologous regions in a homologyguided manner while it performs de novo assemblies of insertions and highly polymorphic target regions subsequently to an alignment-consensus approach. LOCAS has been evaluated in homology-guided assembly scenarios with low sequence coverage of Arabidopsis thaliana strains sequenced as part of the Arabidopsis 1001 Genomes Project. While assembling the same amount of long insertions as state-of-the-art NGS assemblers, LOCAS showed best results regarding contig size, error rate and runtime. Conclusion: LOCAS produces excellent results for homology-guided assembly of eukaryotic genomes with short reads and low sequencing depth, and therefore appears to be the assembly tool of choice for the detection of novel sequenc
    corecore